Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We revisit the theory of first-order quasilinear systems with diagonalizable principal part and only real eigenvalues, what is commonly referred to as strongly hyperbolic systems. We provide a self-contained and simple proof of local well-posedness, in the Hadamard sense, of the Cauchy problem. Our regularity assumptions are very minimal. As an application, we apply our results to systems of ideal and viscous relativistic fluids, where the theory of strongly hyperbolic equations has been systematically used to study several systems of physical interest.more » « lessFree, publicly-accessible full text available November 4, 2025
-
Abstract We investigate the initial value problem of a very general class of non-Newtonian compressible fluids in which the viscous stress tensor with shear and bulk viscosity relaxes to its Navier–Stokes values. These fluids correspond to the non-relativistic limit of well-known Israel–Stewart-like theories used in the relativistic fluid dynamic simulations of high-energy nuclear and astrophysical systems. After establishing the local well-posedness of the Cauchy problem, we show for the first time in the literature that there exists a large class of initial data for which the corresponding evolution breaks down in finite time due to the formation of singularities. This implies that a large class of non-Newtonian fluids do not have finite solutions defined at all times.more » « less
-
We consider equations of Müller-Israel-Stewart type describing a relativistic viscous fluid with bulk viscosity in four-dimensional Minkowski space. We show that there exists a class of smooth initial data that are localized perturbations of constant states for which the corresponding unique solutions to the Cauchy problem break down in finite time. Specifically, we prove that in finite time such solutions develop a singularity or become unphysical in a sense that we make precise. We also show that in general Riemann invariants do not exist in 1+1 dimensions for physically relevant equations of state and viscosity coefficients. Finally, we present a more general version of a result by Y. Guo and A.S. Tahvildar-Zadeh: we prove large-data singularity formation results for perfect fluids under very general assumptions on the equation of state, allowing any value for the fluid sound speed strictly less than the speed of light.more » « less
-
Abstract In this paper we provide a complete local well-posedness theory for the free boundary relativistic Euler equations with a physical vacuum boundary on a Minkowski background. Specifically, we establish the following results: (i) local well-posedness in the Hadamard sense, i.e., local existence, uniqueness, and continuous dependence on the data; (ii) low regularity solutions: our uniqueness result holds at the level of Lipschitz velocity and density, while our rough solutions, obtained as unique limits of smooth solutions, have regularity only a half derivative above scaling; (iii) stability: our uniqueness in fact follows from a more general result, namely, we show that a certain nonlinear functional that tracks the distance between two solutions (in part by measuring the distance between their respective boundaries) is propagated by the flow; (iv) we establish sharp, essentially scale invariant energy estimates for solutions; (v) a sharp continuation criterion, at the level of scaling, showing that solutions can be continued as long as the velocity is in$$L^1_t Lip$$ and a suitable weighted version of the density is at the same regularity level. Our entire approach is in Eulerian coordinates and relies on the functional framework developed in the companion work of the second and third authors on corresponding non relativistic problem. All our results are valid for a general equation of state$$p(\varrho )= \varrho ^\gamma $$ ,$$\gamma > 1$$ .more » « less
An official website of the United States government
